Computing with Signals

Lecture-05

Signal
Model

Processing
Representation

Signal
Model

Processing
Representation

Signal
Model or
Representation

Signal
 Model
 Representation

- Polynomial representation

Processing

- Polynomial representation
- Fourier representation

- Polynomial representation

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =\sum_{m=0}^{\infty} a_{m} x^{m}
\end{aligned}
$$

- Fourier series representation

$$
f(x)=\sum_{m=0}^{\infty} A_{m} \sin \left(\frac{\pi m x}{L}+\phi_{n}\right)
$$

- Polynomial representation

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =\sum_{m=0}^{\infty} a_{m} x^{m}
\end{aligned}
$$

- Fourier series representation

$$
f(x)=\sum_{m=0}^{\infty} A_{m} \sin \left(\frac{\pi m x}{L}+\phi_{n}\right)
$$

- Fourier series representation

$$
\begin{aligned}
f(x) & =\sum_{m=0}^{\infty} A_{m} \sin \left(\frac{\pi m x}{L}+\phi_{n}\right) \longleftrightarrow \sin (\mathrm{A}+\mathrm{B})=\sin (\mathrm{A}) \cdot \cos (\mathrm{B})+\cos (\mathrm{A}) \cdot \sin (\mathrm{B}) \\
& =\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \left(\frac{\pi m x}{L}\right)+b_{m} \sin \left(\frac{\pi m x}{L}\right)
\end{aligned}
$$

A function can be written as sum of scaled cosine() and sine() functions

Jean-Baptiste Joseph Fourier
French Mathematician \& Physicist
(1768-1830)

Jean-Baptiste Joseph Fourier
French Mathematician \& Physicist (1768-1830)

On the Eiffel Tower, 72 names of French scientists, engineers, and mathematicians are engraved in recognition of their contributions.

Fourier series representation

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- It is sum of many (infinite) terms
- Each of the $\cos ($.$) and \sin ($.$) term is periodic -2 L / m$
- Parameters of the sum are $\left\{a_{o}, a_{m}, b_{m}\right\}$
- It is a linear summation of $\cos ($.$) and \sin ($.$) , with no cross-terms$

Fourier series representation

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Let's visualize the cosine term

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Example: $L=\pi$

This function has a period of 2 L

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Example: $L=\pi$

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m}\left(\cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)\right.
$$

Example: $L=\pi$

$$
\cos \left(\frac{m \pi x}{L}\right)
$$

$$
\sin \left(\frac{m \pi x}{L}\right)
$$

Spans only even functions of period 2 L

Spans only odd functions of period 2L

$$
\cos \left(\frac{m \pi x}{L}\right)
$$

$+$

$$
\sin \left(\frac{m \pi x}{L}\right)
$$

Together they span ~ all functions of period 2 L

Spans only even functions of period 2L
Spans only odd functions of period 2L

Fourier series representation

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- Consider a 2 L periodic signal $\mathrm{f}(\mathrm{x})$
- How do we compute $\left\{\mathrm{a}_{0}, \mathrm{a}_{\mathrm{m}}, \mathrm{b}_{\mathrm{m}}\right\}$ to represent $\mathrm{f}(\mathrm{x})$ in the above form?

Let's first review some properties of sine and cosine functions. This will help us.

Fourier series representation

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- Consider a 2 L periodic signal $\mathrm{f}(\mathrm{x})$
- How do we compute $\left\{a_{0}, a_{m}, b_{m}\right\}$ to represent $f(x)$ in the above form?

Let's first review some properties of sine and cosine functions. This will help us.

$$
\int_{0}^{2 L} f(x)=0
$$

Integration of $\sin ($.$) function over a period (or its multiples) is 0$.

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- Integration of $\sin ($.$) function over a period (or its multiples) is 0$.
- The same holds for cosine(.) as well.
- Thus, by integrating both sides of the above equation, we get

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x
$$

Let's see a cross-term, that is multiplication of two $\sin ($.

$$
\int_{0}^{2 L} \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{2 \pi x}{L}\right)=0
$$

Integration of cross-terms over a period (or its multiples) is 0 .

Further, integration of any two cross-terms over a period (or its multiples) is 0 .

$$
\begin{aligned}
& \int_{0}^{2 L} \sin \left(\frac{m_{1} \pi x}{L}\right) \sin \left(\frac{m_{2} \pi x}{L}\right)=0, m_{1} \neq m_{2} \\
& \int_{0}^{2 L} \cos \left(\frac{m_{1} \pi x}{L}\right) \cos \left(\frac{m_{2} \pi x}{L}\right)=0, \\
& \int_{0}^{2 L} \sin \left(\frac{m_{1} \pi x}{L}\right) \cos \left(\frac{m_{2} \pi x}{L}\right)=0
\end{aligned}
$$

The $\sin ($.$) and cosine(.) functions as used in Fourier series are orthogonal$ functions.

Familiar with orthogonal vectors in Euclidean spaces

Visualize the vectors as composed of values sampled from functions.

Then, orthogonality implies,

The $\sin ($.$) and cosine(.) functions as used in Fourier series are orthogonal$ functions.

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- Thus, by multiplying both sides by corresponding $\sin ()$ or cosine() term and integrating, we get

$$
\begin{aligned}
a_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right) d x, \text { and } \\
b_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x
\end{aligned}
$$

Summary,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right) d x, \text { and } \\
& b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x .
\end{aligned}
$$

Consider the signal,

Consider the signal,

Consider the periodic signal,

Can we express this signal using a Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\mathrm{M}}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Consider the periodic signal,

Fourier series approximation,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\mathrm{M}}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Another example,

Fourier series approximation,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\mathrm{M}}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Fourier series approximation,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\mathrm{M}}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

Summary, Fourier series approximation,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\mathrm{M}}\left(a_{m} \cos \left(\frac{m \pi x}{L}\right)+b_{m} \sin \left(\frac{m \pi x}{L}\right)\right)
$$

- Can model (or represent) a periodic signal
- Parameters of the model are $\left\{a_{0}, a_{m}, b_{m}\right\}$ and M
- Suitable if signal has oscillatory patterns (or fluctuations)

Do periodic signal exist in real-life?

EEG signal (correlate of electrical activity in the brain)

Air pressure associated with spoken speech utterance

and a lot more! We will continue next class.

